## Temperature Coefficient of a Resistor; What it means?

In wirewound resistors, another selection factor is the temperature characteristic of the wire.

The resistance of all materials changes as their temperature changes. If the temperature is lowered, resistance (typically) declines. In fact, if cooled sufficiently, the material becomes a "superconductor" with no significant resistance. Increasing the temperature (typically) increases resistance. The temperature coefficient of resistance (TCR) of wire or a resistor relates the change in resistance to the change in temperature. It is usually expressed as "parts per million per degree Centigrade" (TCR = ppm/C.) The temperature coefficient of resistance, then, tells you how much the resistance changes (ppm) if the temperature changes one degree Centigrade.

Sometimes, we measure temperature in degrees Fahrenheit. But today, degrees Centigrade is more common and acceptable. Special wire alloys are formulated to have special temperature coefficients. For example, "Evenohm" (a trade name for a low TCR wire alloy) is formulated to have a small TCR of 5 to 10 ppm/C. Pure nickel has a much larger TCR of 6700 ppm/C. Copper has a TCR of 3900 ppm/C. These, and other alloys allow us to "tailor" the resistor to desired characteristics in applications where temperatures change. As a practical example, a resistor with a resistance of 1000 ohms, made from pure nickel wire, would have a new resistance of 1670 ohms if we increase its temperature from 20C to 120C. In the same application, a resistor made with Evenohm wire would increase to only 1001 ohms.

## A second life for ammeter shunt resistors

Click here to see our latest published article about our newly released ammeter shunts :

The growth in energy supply from renewable sources: solar, wind, and wave or tidal power, is also prompting an increased demand for more accurate high-current measurement solutions. This isn’t simply to enable utility companies to better measure the power contributed to the grid for billing purposes, or to achieve more precise control of the generating plant. Rather the need for improved accuracy over more conventional electricity metering devices is to ensure the warranted performance of the various elements of a distributed power system. A return to the principles of traditional ammeters that employ shunt resistors for high-current handling appears to be the answer.

Continue to read here: ECN

## Wirewound Resistors vs. Film Resistors

Wirewound resistors have been around for a long time. They enjoy a long life because they have some very important features not duplicated by new technology products. If you must optimize circuit designs where precision is important, you should understand those characteristics.

For most of the history of electronic and electrical circuits, wirewound resistors were the only game in town for precision resistances. Wirewound precision resistors have some important characteristics. First, they can have very tight resistance tolerances . . . 0.005% is commonly achieved. More important, they are stable (15-50ppm/yr) maintaining their precision over time because they are made with stable materials. Their TCR (Temperature Coefficient of Resistance) is low (<10ppm/°C) and can be controlled by selecting special wire alloys. (Usually, you need the lowest TCR, but a higher TCR has special interest in some applications.)

## Riedon is ISO 9001:2008 certified company

We are pleased to announce that Riedon is now ISO 9001:2008 certificated by Det Norske Veritas (DNV). ISO 9001:2008 registration is the most widely recognized international standard for quality management systems and is an important step in maintaining Riedon’s leadership position in the electronic components industry.

The ISO 9001:2008 defines minimum requirements for a company’s Quality Management System and many major domestic purchasers and multinational corporations require their suppliers to hold ISO 9001:2008 certification. A number significant benefits for organizations certified to ISO 9001:2008 can be realized, including a more organized operating environment and a higher level of customer satisfaction.

"ISO 9001:2008 certification is a significant step forward for Riedon and one in which our employees and management team can be justifiably proud", said Greg Wood, Vice President and General Manager of Riedon. "The Certification provides our customers with further confidence that Riedon will continue to advance their commitment to provide the highest level of customer satisfaction in all areas.”

## Looking for IRC / TT Electronics PN: MHP140 cross?

We've heard that IRC/ITT has discontinued their MHP product line. If you need help in crossing, please call us at 626-284-9901 or email us at [email protected]

We have a broad selection of IRC/TT power TO type product replacement.

## List Of Custom Designed Resistors

Click here to see a partial list of custom designed resistors we have done for our customers worldwide. Click here.

## Low Tolerance Resistors

Looking for very low tolerance resistors, less than 0.01%? Please check what Riedon has to offer. Click the links below:

Four Terminal / Surface Mount Wirewound Resistors

Call us at 626-284-9901 if you would like to talk to an application engineer.

## Precision DC Current Shunts

You can now buy Riedon's high amp current shunts directly from Digikey.

Here is the link: http://www.digikey.com/product-highlights/en/precision-dc-current-shunts/52993?WT.z_sm_link=Twitter_riedon_1027

## A Resistor Primer Series: INDUCTANCE

There is another quantity that is similar to resistance. It is called "reactance." Like resistance, we measure reactance in ohms, and it follows the rule of Ohms Law.

Reactance only occurs in electrical or electronic circuits if the current flow is changing rapidly. It is usually important in "alternating current" (AC) circuits where the current periodically changes direction and amplitude at some rate called "frequency." However, reactance does not exist in "direct current" (DC) circuits where current flows in one direction and its amplitude is not changing rapidly.

Reactance occurs because all circuit elements have "inductance" and "capacitance." In AC circuits, the capacitance of wire wound resistors is seldom large enough to be considered, so we will ignore it in this discussion. However, the inductance of wire wound resistors can be critical!

All conductors have some inductance. When the conductor is coiled, as it usually is in wire wound resistors, this inductance becomes larger. In AC circuits, inductance causes "inductive reactance." Inductive reactance and resistance add, increasing the resistor's value.

Inductive reactance increases as the frequency of the alternating current increases. For example, a resistor might have enough inductance to create one ohm of reactance at a frequency of 60 Hz (cycles per second.) If we increase the frequency to 6,000 Hz (an audio frequency), the reactance would increase to 100 ohms. Increasing the frequency to 6,000,000 Hz (a radio frequency), increases the resistor's reactance is 10,000 ohms.

Obviously, the inductance of wirewound resistors can be significant in AC circuits! When reactance is important in AC circuit applications, Riedon can wind the wire in a special way to eliminate or reduce the resistor's inductance.

## A Resistor Primer Series: TEMPERATURE COEFFICIENT

In wirewound resistors, another selection factor is the temperature characteristic of the wire.

The resistance of all materials changes as their temperature changes. If the temperature is lowered, resistance (typically) declines. In fact, if cooled sufficiently, the material becomes a "superconductor" with no significant resistance. Increasing the temperature (typically) increases resistance.

The temperature coefficient of resistance (TCR) of wire or a resistor relates the change in resistance to the change in temperature. It is usually expressed as "parts per million per degree Centigrade" (TCR = ppm/°C.) The temperature coefficient of resistance, then, tells you how much the resistance changes (ppm) if the temperature changes one degree Centigrade. (Sometimes, we measure temperature in degrees Fahrenheit. But today, degrees Centigrade is more common and acceptable.)

Special wire alloys are formulated to have special temperature coefficients. For example, "Evenohm" (a trade name for a low TCR wire alloy) is formulated to have a small TCR of 5 to 10 ppm/°C. Pure nickel has a much larger TCR of 6700 ppm/°C. Copper has a TCR of 3900 ppm/°C. These, and other alloys allow us to "tailor" the resistor to desired characteristics in applications where temperatures change.

As a practical example, a resistor with a resistance of 1000 ohms, made from pure nickel wire, would have a new resistance of 1670 ohms if we increase its temperature from 20°C to 120°C. In the same application, a resistor made with Evenohm wire would increase to only 1001 ohms.